On-line:гостей 0. Всего: 0 [подробнее..]
Наш девиз: Пессимист видит трудности при каждой возможности; оптимист в каждой трудности видит возможности!

АвторСообщение
администратор




Сообщение:992
Зарегистрирован:24.02.13
Репутация:0
ссылка на сообщение  Отправлено:01.03.14 20:22.Заголовок:Петрография


Петрография

(от греч. pétros — камень и ...графия) наука о горных породах (См. Горные породы), их минералогических и химических составах, структурах и текстурах, условиях залегания, закономерностях распространения, происхождения и изменения в земной коре и на поверхности Земли. Существует тенденция разделения общей науки о горных породах на две части — П., преимущественно описательного характера, и петрологию (См. Петрология), в которой даётся анализ генетических соотношений. Однако часто эти термины рассматриваются как синонимы.
Предмет и методы петрографии. П.— наука геологического цикла; она тесно связана с минералогией (См. Минералогия), геохимией (См. Геохимия), вулканологией (См. Вулканология), тектоникой (См. Тектоника), стратиграфией (См. Стратиграфия) и учением о полезных ископаемых (См. Полезные ископаемые).
По типам изучаемых горных пород различают П. магматических, П. метаморфических и П. осадочных горных пород, или литологию (См. Литология).
П. магматических горных пород (См. Магматические горные породы) исследует кристаллические горные породы, образовавшиеся в основном в результате застывания и кристаллизации магмы (См. Магма). Процессы расщепления (дифференциации) магмы в ходе её застывания в земной коре и растворения в магме вмещающих пород (ассимиляции, контаминации) вели к возникновению различных по составу типов изверженных горных пород и связанных с ними полезных ископаемых. Исследование магматических пород проводится с целью определения их вещественного состава, выяснения физико-химических условий застывания магмы, их взаимоотношения с окружающими породами и пр.
П. метаморфических горных пород (См. Метаморфические горные породы) занимается исследованием горных пород, изменивших (без разрушения и расплавления) первоначальный минеральный и химический состав под влиянием новых физико-химических условий (см. также Метаморфизм горных пород). По характеру изменения различают породы разных метаморфических фаций, минеральный состав которых определяется в основном давлением и температурой окружающей среды (см. Фации метаморфизма).
Кроме того, существуют горные породы, занимающие промежуточное положение. Так, некоторые метаморфические породы в процессе своего образования подвергаются частичному расплавлению (см. Палингенезис); и наоборот, в формировании некоторых магматических пород значительную роль играют процессы метаморфизма. Существуют породы, переходные между осадочными и магматическими (Вулканогенно-осадочные породы, Пирокластические породы и др.), которые сложены магматическим материалом, но способ их образования и условия залегания характерны для осадочных горных пород (См. Осадочные горные породы).
Для изучения состава и строения горных пород применяются специальные методы исследования. К ним относятся в первую очередь кристаллооптические методы, позволяющие изучать тонкозернистые минеральные агрегаты. При этом используются поляризационный микроскоп и другие приборы. Широко применяются рентгеноскопический метод и спектральный анализ, которые дают возможность определить элементы-примеси, присутствующие в породах в ничтожных количествах. Химический состав минералов определяется при помощи микроанализаторов непосредственно в горных породах без предварительного выделения минералов. Вещество горных пород исследуется также путём химического анализа. Физические исследования горных пород и составляющих их минералов применяют для определения ряда физических констант (плотность, твёрдость, тепловое расширение, сжимаемость, скорости сейсмических волн, вязкость, электрические и магнитные свойства и т.д.). С середины 20 в. в П. всё шире используются математические методы на основе применения ЭВМ. В первую очередь привлекаются методы математической статистики для оценки достоверности совокупностей химических или спектральных анализов, построения рациональных классификаций горных пород, определения поисковых признаков на разные виды полезных ископаемых, пересчётов химических анализов. Таким образом, изучение горных пород включает в себя сложный комплекс разнообразных исследований, начало которых относится к полевым наблюдениям (при геологосъёмочных работах, в Кернах или в горных выработках). Обобщение геолого-петрографических материалов в региональном плане позволяет подойти к выявлению роли различных типов горных пород в процессах формирования и развития земной коры (формационный анализ).
По характеру изучаемых свойств и применяемым методам выделяют следующие разделы П.: Петрохимия, Петрофизика, Петротектоника, физико-химическая и экспериментальная П., техническая П., космическая П.
Выяснение всего комплекса химических взаимоотношений в отдельных породах и в их естественных сочетаниях составляет содержание раздела П.— петрохимии.
Развитие инженерно-геологических и геофизических исследований активизировало изучение физических свойств горных пород и привело к появлению новой ветви в П.— петрофизики, устанавливающей связь физических свойств горных пород с их составом, структурой и историей формирования.
Петротектоника (структурная петрология) — раздел П., изучающий связи между геометрическими закономерностями микроструктур горных пород и движениями или деформациями в них с целью выяснения действующих сил и напряжений. В её основе лежит микроструктурный (петроструктурный) анализ, направленный на установление господствующей пространственной ориентировки плоскостных и линейных компонентов структуры горной породы.
Физико-химическая П. на основе общих законов термодинамики выявляет связи между химическим и минеральным составами горных пород, с одной стороны, и общими условиями их формирования — с другой.
Экспериментальная П. занимается моделированием природных процессов образования горных пород (составляющих их минералов и минеральных ассоциаций).
Особое направление в развитии П. составляет техническая П., начало которой было положено трудами советского геолога Д. С. Белянкина. Техническая П. выявляет с помощью петрографических методов минеральный состав технических продуктов (шлаков, фарфора, цемента, стекла, керамики, каменного литья), тем самым оказывает большую помощь силикатному и металлургическому производству. В свою очередь, используя опыт техники в части образования каменных продуктов, техническая П. помогает расшифровывать многие процессы породообразования.
Космическая П., оформившаяся в 1970-е гг., изучает Метеориты, горные породы Луны и др. планет.
Исторический очерк. До середины 19 в. проблемы П. решались частично минералогией и общей геологией; в это время были заложены её основы. В частности, было проведено разделение всех горных пород по их генезису на осадочные, магматические и метаморфические. Зарождение П. как науки относится к середине 19 в., когда Г. К. Сорби показал возможность изучения минерального состава горных пород в шлифах под микроскопом. Далее в практику исследовательских работ по П. был введён поляризационный микроскоп, а затем усовершенствованы методы кристаллооптических исследований (немецкие петрографы К. Г. Розенбуш и Ф. Циркель, французские — Ф. Фуке, О. Мишель-Леей (См. Мишель-Леви), советский — А. П. Карпинский, американский — Э. Ларсен), разработан теодолитный метод изучения оптической констант минералов в шлифах при помощи универсального столика (Е. С. Федоров (См. Фёдоров)). Были предложены способы определения состава минералов по их кристаллооптическим свойствам, лежащие сейчас в основе изучения вещества горных пород (Е. С. Федоров, В. В. Никитин, американский учёный А. Уинчелл). Теодолитный (федоровский) метод породил микроструктурный анализ (немецкие учёные Б. Зандер, Г. Беккер, В. Шмидт, советский — Н. А. Елисеев).
Параллельно усовершенствовались методы химических исследований горных пород, что в совокупности с появлением богатого описательного петрографического материала привело к созданию в 1920—30-е гг. количественно-минералогического (П. Ниггли, Б. М. Куплетский и др.) и химического (Ф. Ю. Левинсон-Лессинг, А. Н. Заварицкий, К. Г. Розенбуш, П. Ниггли) классификаций магматических горных пород, основанных на различных способах пересчёта химических анализов горных пород.
В конце 19— начале 20 вв. основное внимание П. было привлечено к изучению проблемы генезиса и причин разнообразия магматических пород. Были высказаны предположения о существовании процессов разделения первичной магмы на частные магмы (Дифференциация магмы) и процессов усвоения магмой вмещающих пород (Ассимиляция, контаминация). В конце 19 в. Ф. Ю. Левинсон-Лессинг показал, что родоначальным источником для образования магматических пород, развитых на поверхности Земли, служат две принципиально различные магмы — кислая и основная. В 1920-х гг. эта идея была поддержана Р. Дейли. В начале 30-х гг. Н. Л. Боуэн выступил с получившей большую популярность гипотезой существования в недрах Земли одной базальтовой магмы, за счёт которой в процессе т. н. кристаллизационной дифференциации (отделение от остаточной магмы в результате всплывания или погружения в ней выделившихся кристаллов) могли образоваться почти все магматические горные породы. Впоследствии в природе были обнаружены реальные случаи кристаллизационной дифференциации (А. А. Полканов, английские учёные Л. Уэйджер и Г. Браун).
Большое внимание петрографов было привлечено к гранитам, залегающим в глубокометаморфизованных гнейсовых и мигматитовых толщах. Ещё в начале 20 в. Я. И. Седергольм выяснил, что эти породы обладают рядом особенностей, которые трудно объяснимы, если предположить внедрение гранитной магмы, и указал, что такие граниты не являются магматическими, а образовались в результате метасоматической гранитизации или ультраметаморфизма под действием глубинных эманаций. В 40—50-е гг. эти предположения пользовались особой популярностью (П. Эскола, Х. Г. Баклунд, Ю. А. Кузнецов, Н. Г. Судовиков).
В работах Д. С. Коржинского (См. Коржинский) (начиная с 1936) были созданы основы физико-химического анализа парагенезисов минералов (См. Парагенезис минералов). Компоненты, составляющие горные породы, были разделены на группы в соответствии с ролью, которую они играют в процессах минералообразования. Введены понятия о дифференциальной подвижности компонентов и системах с вполне подвижными компонентами, условия химического равновесия в которых определяются особыми термодинамическими потенциалами (потенциалы аллохимических равновесий). Это значительно расширило область приложения анализа парагенезисов минералов к природным процессам (см. Минералогическое правило фаз). Д. С. Коржинский показал, что магматизм в земной коре развивается в тесном взаимодействии с флюидами (трансмагматическими растворами), обосновал большую роль процессов магматического замещения в становлении изверженных пород в глубинных условиях и разработал теорию метасоматической зональности. На основе анализа парагенезисов минералов в 60—70-е гг. разработаны системы минеральных фаций магматических, метаморфических и метасоматических горных пород (советские геологи В. А. Жариков, А. А. Маракушев).
Большое значение для выяснения происхождения различных магматических и метаморфических пород имели экспериментальные исследования в П. (Ф. Ю. Левинсон-Лессинг и А. С. Гинзберг, начало 20 в., американские учёные Н. Л. Боуэн, О. Татл, Р. Горансон, 20—30-е гг.). Эти исследования получили особенно большой размах в 50—60-е гг. (советские учёные И. А. Островский, Н. И. Хитаров, В. С. Соболев, Г. Л. Поспелов, американские — Д. Гамильтон, Х. Йодер, С. Тилли, австралийские — Д. Грин, А. Рингвуд и др.).
Особенно важным было изучение процессов плавления горных пород под давлением паров летучих компонентов H2O, CO2, H2 и др., в результате которого было установлено, что в присутствии воды температура плавления силикатов резко понижается, и поэтому в природных условиях гранитный расплав может быть получен при наличии воды и относительно низких температурах из разнообразных по составу первичных пород.
Современное состояние и задачи петрографии. В 60—70-е гг. на основании новых петрологических, экспериментальных и геофизических исследований вновь стала обсуждаться возможность образования гранитов в результате выплавления из глубинных оболочек Земли (советские учёные Д. С. Штейнберг, П. Н. Кропоткин и др.). Многие исследователи признают существование в природе двух типов гранитов. Первый из них образовался из палингенной гранитной магмы, относительно низкотемпературной, возникшей при частичном плавлении пород земной коры в условиях их насыщения водой (см. Палингенезис). При её кристаллизации на месте образуются неперемещённые, т. н. автохтонные, или слабо перемещенные граниты. Второй тип гранитов возникает из кислых расплавов, которые образуются в процессе преобразований (дифференциации, контаминации сиалическим материалом и т.д.) базальтовой магмы, происходящей из верхней мантии или нижних частей земной коры. Такие кислые расплавы, обладающие высокой температурой, способны достигать земной поверхности, формируя не только интрузивные граниты, но и их эффузивные аналоги.
Большое внимание в П. привлекает проблема магматических формаций (См. Формации), в которые объединяются группы генетически и структурно связанных между собой магматических горных пород, образующих устойчивые ассоциации (Г. Д. Афанасьев, Ю. А. Кузнецов), показано существование вулкано-плутонических формаций (советский петрограф Е. К. Устиев). Разрабатывается также проблема связи магматизма и тектоники, которую впервые поставил Х. Штилле. Исключительное внимание уделяется изучению магматизма океанов, особенно срединно-океанических хребтов (См. Срединно-океанические хребты), возникновение которых связывается с глубинными процессами формирования магм (Д. Грин и А. Рингвуд). Высказываются предположения, что офиолитовые серии геосинклинальных областей образовались в океанических областях геологического прошлого (см. Офиолиты).
Исследования в области П. в СССР ведутся институтами АН СССР, управлениями и ведомствами министерств геологии СССР и союзных республик, учебными институтами. В 1952 при Отделении геолого-географических наук АН СССР был создан Межведомственный петрографический комитет для решения вопросов генезиса и номенклатуры горных пород. Проблемы П. обсуждаются на периодически (через 4—5 лет) созываемых Всесоюзных петрографических совещаниях (начиная с 1953), а также на региональных петрографических совещаниях. Кроме того, важнейшим проблемам П. посвящаются тематические сессии геологического конгресса Международного (См. Геологический конгресс Международный). Работы по П. публикуются в ряде периодических изданий: в СССР — в геологических сериях «Докладов» и «Известий» АН СССР, в «Записках Всесоюзного минералогического общества» (См. Записки Всесоюзного минералогического общества), в журнале «Советская геология» и др.; за рубежом проблемам П. посвящен специально издаваемый журнал «Journal of Petrology» (Oxf., с 1960).
Лит.: Боуэн Н. Л., Эволюция изверженных пород, пер. с англ., М.— Л.— Новосиб., 1934; Розенбуш Г., Описательная петрография, пер. с нем., М.— Грозный — Новосиб., 1934; Левинсон-Лессинг Ф. Ю., Избр. труды, т. 4— Петрография, М., 1955; Елисеев Н. А., Метаморфизм, М., 1963; Кузнецов Ю. А., Главные типы магматических формаций, М., 1964; 3аварицкий А. Н., Введение в петрохимию изверженных горных пород, 2 изд., М.— Л., 1950; его же, Изверженные горные породы, М., 1961; Лукин Л. И., Чернышев В. Ф., Кушнарев И. П., Микроструктурный анализ, М., 1965; Петрология верхней мантии, пер. с англ., М., 1968; Винклер Г., Генезис метаморфических пород, пер. с нем., М., 1969; Уэиджер Л., Браун Г., Расслоенные изверженные породы, пер. с англ., М., 1970; Соловьев С. П., Химизм магматических горных пород и некоторые вопросы петрохимии, Л., 1970; Петров В. П., Магма и генезис магматических горных пород, М., 1972; Коржинский Д. С., Теоретические основы анализа парагенезисов минералов, М., 1973; Перчук Л. Л., Термодинамический режим глубинного петрогенеза, М., 1973; Sander В., Einführung in die Gefügekunde der geologischen Körper, Tl 1—2, W.— Innsbruck, 1948—50.

click here

Спасибо: 0 
ПрофильЦитата Ответить
Ответов -2 [только новые]


администратор




Сообщение:993
Зарегистрирован:24.02.13
Репутация:0
ссылка на сообщение  Отправлено:01.03.14 20:46.Заголовок:МИНИСТЕРСТВО ГЕОЛОГИ..


МИНИСТЕРСТВО ГЕОЛОГИИ СССР

ВСЕСОЮЗНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ ГИДРОГЕОЛОГИИ И ИНЖЕНЕРНОЙ ГЕОЛОГИИ (ВСЕГИНГЕО)


Утверждены

Ученым Советом ВСЕГИНГЕО

12 декабря 1970 г.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ
ПО ИЗУЧЕНИЮ ОПОЛЗНЕВЫХ ЯВЛЕНИЙ
МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИМ МЕТОДОМ

Москва 1972

Составили А. М. Царева, В. В. Пономарев

Научный редактор Г. К. Бондарик
ПРЕДИСЛОВИЕ И ОБЩИЕ ПОЛОЖЕНИЯ

При оценке инженерно-геологических условий территорий, сложенных глинистыми породами, в районах опасных в оползневом отношении весьма существенную роль играют минералого-петрографические характеристики этих пород. Как показали исследования последних лет, поведение глинистых пород в откосе во многом зависит от минералогического состава глинистой фракции (А. Я. Туровская, П. В. Царев, А. М. Царева и др.), а деформация в глинистых породах приводит к необратимым текстурным изменениям в них.

Таким образом, исследования минералогического состава по фракциям дают возможность прогнозировать поведение глинистых пород на склонах, а изучение структурно-текстурных особенностей глинистых пород - выявить зоны деформации или поверхности смещения оползневых тел.

При изучении минералого-петрографическим методом глинистых пород оползней Черноморского побережья в период 1968-1970 гг. было установлено, что метод позволяет: а) определить границы оползневого тела в горизонтальном и вертикальном направлениях оползневого склона; б) установить местонахождение и мощность зоны деформации или поверхности смещения; в) выявить участки оползневых тел, в пределах которых породы ранее претерпели деформации.

В последнее время многие исследователи оползневых явлений пытаются привлечь различные методы оценки состава и структуры глинистых пород с целью более глубокого познания оползневого процесса для его прогнозирования и выявления методов борьбы с ним. Так, было установлено, что в зоне смещения и максимальной деформации глинистых пород оползневого склона содержание легкорастворимых солей резко снижается по сравнению с содержанием последних в породах, незатронутых оползнями. Местоположение этих зон легко устанавливается после сплошного опробования пород по глубине выработки методом водных вытяжек.

Однако, такое опробование целесообразно применять лишь в случае, если глинистые породы оползневого склона содержат значительное (не менее 3-4 %) количество легкорастворимых солей.

Проведение массовых минералого-петрографических исследований не требует больших затрат средств и времени, сложного оборудования и специальной подготовки исследователей. Из разработанного комплекса методов оценки минералого-петрографических особенностей для общей характеристики пород оползневого склона достаточно использовать один, наиболее простой, оптический метод, который может быть внедрен в лабораторию любой оползневой станции инженером-геологом, знакомым с петрографическим изучением пород в шлифах.

При проведении исследовании может появиться необходимость детального изучения минералогического состава и текстурных особенностей с получением количественной оценки этих показателей. В этом случае тщательно отобранные и представительные образцы могут быть направлены в специализированные петрографические лаборатории для изучения их комплексом методов с применением рентгеноструктурного анализа.

При описании структурно-текстурных особенностей часто употребляются термины структура (макроструктура, мезоструктура и микроструктура) и текстура (макротекстура, мезотекстура и микротекстура). Так как имеется несколько определений этих понятий, следует отметить, что под текстурой мы понимаем взаимное расположение структурных элементов - частиц, агрегатов, блоков, а под структурой - размер, форму и соотношение этих элементов (определение А. Н. Заварицкого, 1932).

Под макротекстурой и макроструктурой понимаются структурно-текстурные особенности, изучаемые визуально или с помощью лупы, увеличивающей в 10 раз.

Под мезотекстурой и мезоструктурой понимаются структурно-текстурные особенности, изучаемые с помощью поляризационного микроскопа.

Под микротекстурой и микроструктурой понимаются структурно-текстурные особенности, поддающиеся изучению только с применением рентгеноструктурного анализа и электронной микроскопии. Это связано с тем, что микроструктурные элементы (элементарные частицы глинистых минералов и микроагрегаты) очень малы (< 5 микрон).

Минералого-петрографические исследования оползневых накоплений проводятся в два этапа: а) полевые, б) лабораторные исследования.
Глава I
ПОЛЕВЫЕ МЕТОДЫ МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИХ ИССЛЕДОВАНИЙ

Минералого-петрографическое изучение пород, слагающих оползневые склоны, сводится к описанию пород в обнажениях, шурфах, расчистках и визуальному описанию керна из скважин.

Выработки, проходимые при стационарных наблюдениях за оползневыми смещениями, могут быть использованы и для проведения минералого-петрографических исследований. Только в отдельных случаях требуется проходка некоторого числа скважин и шурфов специального назначения.

Единственное требование к проходке скважин, намеченных для минералого-петрографических исследований, заключается в том, что проводится сплошной отбор керна задавливаемым или обуривающим грунтоносом. Непрерывный отбор связан с тем, что, как показали исследования предыдущих лет, зоны сдвига - зоны деформации в глинистых породах Черноморского побережья имеют, как правило, небольшую (15-30 см) мощность.

Если проходить скважины с принятым при инженерно-геологических исследованиях отбором монолитов из каждой литологической разности и через 1 метр внутри одной разности, зону сдвига легко пропустить. Следует очень внимательно описывать керн. Нередко даже при очень тщательном визуальном описании не удается отметить изменения, свидетельствующие о наличии зоны смещения. В таких случаях требуется микроскопическое изучение всего разреза. При полевом описании пород в горных выработках, обнажениях и по керну весьма полезным является применение очень простых и эффективных методов оценки однородности пород таких, как сплошное опробование микропенетрометром, искиметром или простым ножом.
I.1. Документация обнажений и горных выработок

При описании обнажений и горных выработок наряду с основными визуальными характеристиками цвета, влажности, плотности, степени однородности, выветрелости, ожелезнения и органических вклинений следует обращать внимание на трещиноватость пород, характер излома, слоистость и сланцеватость, форму, строение и состав неглинистых включений и т.д.

Требуется особое внимание уделять описанию макроструктур и макротекстур, для изучения которых используется естественные обнажения (откосы оврагов, берега рек, горные уступы и т.д.) и специально заложенные горные выработки (скважины, шурфы, расчистки).

При описании макротекстуры и макроструктуры необходимо проследить за их изменениями от дневной поверхности вглубь откоса вплоть до невыветрелой породы. При этом детально характеризуются изменения трещиноватости, раскрытие трещин, их ориентация в пространстве, степень заполнения и состав заполнителя, тип, размер и форма структурных элементов, а также взаимоотношение между отдельными элементами.

Характеристики структурных элементов породы из зоны тонкого дробления сопоставляются с характеристиками элементов породы, залегающей ниже этой зоны, так как нередко размеры и форма структурных элементов зоны тонкого дробления значительно отличаются от этих показателей ненарушенной породы, залегающей ниже.

Необходимо учитывать, что, если в зоне тонкого дробления макротекстура глинистых пород хорошо проявляется, то в свежем разрезе ненарушенной породы макротекстура на первый взгляд кажется монолитной и лишь при тщательном рассмотрении свежего разлома можно выделить отдельные структурные элементы, слагающие породу.

В случае, если сразу после проходки горной выработки макротекстура не проявляется (порода кажется однородной, отсутствуют видимые трещины, не выделяются структурные элементы), стенкам выработки следует дать подсохнуть в течение двух-трех дней. Если макротекстура массивная, то проявляющиеся при ее высыхании трещины не будут иметь никакой системы ориентации в пространстве, а порода будет разбита этими трещинами на бесформенные различные по размерам элементы. Если же макротекстура не массивная, то после подсыхания должны проявиться структурные элементы, ее слагающие. Как правило, в стенках выработки появляются трещины, позволяющие выделить отдельные элементы и оценить основные компоненты (их форму, размеры, пространственную ориентацию). Все эти компоненты заносятся в полевой журнал, а также результаты проверки свежего разреза пород на однородность методами микропенетрометра, ручного искиметра и др.

При документации естественных обнажений описывается также осыпь у подножья с указанием размера и формы отдельностей, слагающих осыпь и мощность слоя осыпи.

Керн из скважин исследуется непосредственно на месте буровых работ тотчас после извлечения его из грунтоноса и очистки от шлама. Острым ножом или скальпелем в керне-монолите делается вырыв по всей поверхности сверху вниз, в котором простым глазом или с помощью 10х лупы можно легко определить основные компоненты. Особо выделяются наиболее увлажненные и дисперсные прослойки, отличные от общей массы породы.

Описание обнажений и горных выработок сопровождается фотографированием и зарисовками всех стенок шурфа и изученных участков обнажения. Детально зарисовываются места отбора монолитов для лабораторных исследований. Очень важно, чтобы при зарисовках не были пропущены включения, гнезда солей, гумуса, подтеки железа. Эти детали будут использованы при расшифровке результатов исследования. В результате полевого описания пород составляется таблица (табл. 1).

Сведения, полученные при характеристике макротекстуры, помогут обоснованно выявить место отбора образцов для детального лабораторного исследования, расшифровки мезо- и микротекстуры.
I.2. Отбор образцов для лабораторных исследований

Лабораторные минералого-петрографические исследования включают определение минералогического состава и структурно-текстурных особенностей пород, а иногда и изучение солевого состава. Для определения минералогического и солевого состава могут быть отобраны образцы как с нарушенной, так и ненарушенной структурой, а для изучения структурно-текстурных особенностей необходимы только ненарушенные ориентированные в пространстве образцы.

Образцы желательно отбирать в виде ориентированных монолитов, затем их необходимо упаковать, т.е. парафинировать для сохранения их естественной влажности. Из обнажений, шурфов и расчисток вырезаются монолиты квадратной формы с указанием верха, а также стрелки на боковой грани монолита, направленной вверх. Стрелку следует ставить на стороне монолита, соответствующей низовой части оползневого тела.

Монолиты отбираются из стенки выработки сплошной колонкой или в шахматном порядке, но так, чтобы иметь весь разрез шурфа.

Размер монолита определяется анализами, которые необходимо провести для этого образца. Если монолит отбирается только для минералого-петрографических исследований, достаточен размер 70×70×70 мм.

ТАБЛИЦА У ПЕРВОИСТОЧНИКА

Диаметр грунтоноса выбирается также с учетом показателей, которые намечено получить для данного образца (табл. 2).

При отборе монолитов грунтоносом отмечается нарушение текстуры породы в 15-миллиметровой зоне, прилегающей к стенке грунтоноса. Эта зона непригодна для исследований.

После удаления зоны нарушенного сложения от края керна по всей его высоте тонкой проволокой отрезается полоска, отсекающая от него 25 мм. Полоска по высоте делится на отдельные 20-миллиметровые штуфики, предназначенные для изготовления прозрачных шлифов. В связи с тем, что из каждого керна в направлении его продольной оси изготавливают 10-40 шлифов, образец должен быть строго ориентирован в вертикальном направлении с указанием верха. Каждый штуфик получает дополнительный номер, позволяющий уточнить местоположение шлифа (рис. 1).

После отбора штуфиков, предназначенных для изготовления шлифов, остаток монолита парафинируется или сразу отправляется на анализы для определения показателей инженерно-геологических свойств пород. Так как для определения минералогического состава глинистой фракции и состава легкорастворимых солей нет необходимости сохранять естественное сложение и влажность, для этих анализов могут быть использованы обрезки породы.



Глава II
ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ

Минералого-петрографические особенности образцов желательно исследовать в лаборатории по изучению инженерно-геологических свойств пород, так как это обеспечит необходимую координацию результатов комплекса методов исследований. Лучше всего показатели физико-механических свойств, минералогического состава и текстурных особенностей определять для одних и тех же образцов. Это облегчает увязку и анализ полученных результатов.

Как уже отмечалось, основными минералого-петрографическими компонентами, имеющими важное значение при изучении пород из оползневых откосов, являются минералогический состав и текстурные особенности.

В связи с тем, что наиболее активное влияние на поведение пород в откосе оказывают глинистые минералы, концентрирующиеся во фракции < 0,005 мм, эта фракция и подвергается детальному минералогическому изучению.

Из известных в настоящее время методов определения минералогического состава глинистой фракции наиболее достоверным является метод рентгеноструктурного анализа, позволяющий получать как качественную, так и количественную характеристику глинистых минералов. При мономинеральном составе или резком преобладании какого-то одного минерала минералогическую характеристику породы можно получить оптическим методом в прозрачных шлифах. Однако, эта оценка качественная, весьма приближенная и может быть использована лишь для выделения участков породы с одинаковым минералогическим составом и отбора характерных образцов с целью определения для них минералогического состава рентгеноструктурным методом.

Текстурные особенности определяются комплексом методов (оптическим, рентгеноструктурным и электронно-микроскопическим). Для детального исследования оползневых склонов основным является оптический метод, с помощью которого качественно изучается мезотекстура всего разреза глинистых пород, слагающих склон, и выделяются отдельные участки - зоны с резко отличной от основной массы породы текстурой.

Для этих участков, а также одного-двух образцов основной массы определяется количественный показатель мезотекстуры - показатель ориентации - оптическим методом. Кроме того, образцы могут быть направлены в специализированные петрографические лаборатории для получения количественных показателей микротекстуры рентгеноструктурным методом и морфологических характеристик породы электронно-микроскопическим методом.

Если оползневой склон сложен глинистыми породами, засоленными легкорастворимыми солями, то следует провести сплошное определение состава и содержания легкорастворимых солей методом водных вытяжек, изложенным в методическом пособии (под редакцией Е. М. Сергеева и др., 1968).

При организации минералого-петрографических исследований в лабораториях инженерно-геологических станций, осуществляющих стационарные наблюдения за оползнями, следует иметь набор оборудования.

Работы с микроскопом можно организовать и в помещении, где проводится выполнение других видов анализов, но обязательным условием является хорошее дневное освещение, отсутствие работ с сухим порошком глинистых пород и наличие вытяжного шкафа. Желательно для проведения этих исследований выделить отдельную комнату площадью 10-12 м2 (микроскопную).

Микроскопная оборудуется поляризационным микроскопом типа МИН. Последняя марка МИН-8 вполне удовлетворяет требованиям минералого-петрографических исследований глинистых пород. Хорошо иметь бинокулярную лупу типа МБС-2, микрофотонасадку типа МФН-1 или МФН-2 или пленочный фотоаппарат с переходником, позволяющим насадить его на тубус микроскопа, и набор иммерсионных жидкостей.

При объеме работ 1000-1500 шлифов в год желательно иметь шлифовальную мастерскую, для которой необходима отдельная комната с хорошей вентиляцией и вытяжным шкафом.

Шлифовальная мастерская оборудуется любым шлифовальным станком, позволяющим работать с набором шлифовальных порошков марок М-7, М-10, М-4 и М-150 и должна иметь набор указанных порошков, канифоль и ксилол. Площадь, занятая шлифовальной мастерской, должна состоять из двух комнат размером по 6-8 м2. В одной из комнат устанавливается шлифовальный станок и вытяжной шкаф.
II.1. Подготовка образцов для лабораторных минералого-петрографических исследований

Поступившие в лабораторию образцы-монолиты визуально описываются. Это дает возможность оценить сохранность их при транспортировке и герметичность упаковки. Кроме этого сразу при описании намечаются виды инженерно-геологических анализов, необходимые для данного образца, и устанавливается очередность выполнения этих анализов. Анализы выполняются в такой последовательности, чтобы в процессе их проведения еще до полного завершения работ иметь возможность увязать необходимые показатели. Например, необходимо сопоставить между собой показатели текстуры пород, которые по визуальному описанию отнесены к породам участков, не затронутых деформациями и к породам из зоны сдвига - зоны деформации или плоскости оползневого смещения.

Визуальное описание сопровождается схематической зарисовкой монолитов, на которой отмечаются места отбора проб для различных видов анализа. Зарисовка облегчает сопоставление результатов испытаний и их анализ. После визуального описания образцы подготавливаются для петрографического изучения.
II.1.1. Подготовка образцов для изучения в прозрачных шлифах

В верхней части каждого штуфика, предназначенного для приготовления шлифа, срезается правый уголок, что означает верх, а на боковой поверхности, секущей образец вкрест напластования и предназначенной для изучения в шлифе, карандашом наносится крестик, что обозначает место закрепления образца на предметном стекле. Затем заготовки оставляются на воздухе для подсыхания до воздушно-сухого состояния. С подсушенных образцов снимается скальпелем или бритвой двухмиллиметровый слой, нарушенный при разрезании его во влажном состоянии.

Подготовленная таким образом пластинка передается в шлифовальную мастерскую.

Дальнейшие операции по приготовлению шлифа производятся в следующем порядке:

1. Высушенная пластинка глинистой породы имеет слабую цементацию, при обработке на шлифовальном станке она раскрошится. Для укрепления пластинка проваривается в растворе канифоли с ксилолом. Во время проварки канифоль проникает в поры породы и, не нарушая структуры, увеличивает ее прочность*).

*) Для приготовления канифоли в ксилоле берется 1 кг канифоли и растирается в ступке до мелкого порошка. Порошок канифоли высыпается в фарфоровую кружку и заливается 1 кг ксилола. Если канифоль по прошествии 1-2 часов растворилась неполностью, раствор следует подогреть до 60-70 °С, помешивая, до полного растворения.

2. Заготовленные пластинки по одной укладывают в огнеупорные пронумерованные тигели, заливают приготовленным раствором таким образом, чтобы пластинка целиком утопала в нем и ставят на электроплитку для проварки под тягой вытяжного шкафа.

3. Во время проварки необходимо следить за тем, чтобы не было бурного кипения раствора, так как ксилол обладает свойством быстро испаряться. При быстром испарении ксилола канифоль не успевает проникнуть в поры на нужную глубину, и образец оказывается несцементированным.

4. Температура подогрева раствора во время проварки должна поддерживаться все время такой, чтобы раствор находился на грани кипения.

Для этого накал электроплитки регулируется реостатом, а тигели устанавливаются не непосредственно на плитку, а на песчаную баню.

5. Продолжительность проварки составляет 6-7 часов.

6. Окончание проварки проверяется следующим образом. Каплю раствора канифоли достают концом пинцета. Если эта капля после остывания рассыпается при нажатии пальцами, проварку можно считать законченной. В случае, если в плотной породе при одной проварке канифоль проникает в поры недостаточно глубоко, проварка повторяется несколько раз.

7. Остывший после проварки образец очищается от канифоли скальпелем и подготовляется к наклейке на предметное стекло. Подготовка образца к наклейке на стекло состоит в следующем: берется стеклянная доска толщиной 1-2 см размером 30×30 см, омачивается водой или глицерином (в случае изготовления глин) и посыпается мелким шлифовальным порошком марки М-7 или М-10. При изготовлении шлифов из монтмориллонитовых глин применение воды не допускается, взамен ее употребляют смесь глицерина и спирта 1:1. Осторожным движением по доске отшлифовывается одна сторона пластинки. Шлифовка продолжается до тех пор, пока пластинка не станет совершенно гладкой.

8. Подготовленная таким образом пластинка отшлифованной стороной с помощью особо полученного канадского или пихтового бальзама наклеивается на подогретое предметное стекло. Для этого кусочком бальзама (на стеклянной палочке) мажут центр стекла со стороны матовой поверхности. Матировка предметных стекол производится заранее на шлифовальном станке при помощи абразивного порошка М-14. Непосредственно после наклейки пластинки на стекло ее нужно слегка прижать так, чтобы между поверхностью пластинки и стеклом не оставалось пузырьков воздуха. После остывания бальзам затвердевает и приклеивает пластинку к стеклу.

9. Приклеенная на стекло пластинка обрабатывается на шлифовальном станке. Диск станка смачивается водой или глицерином (для монтмориллонитовых глин), посыпается грубым шлифовальным порошком марки М-150, смоченным в воде или глицерине, и приводится в движение электромотором (600-700 оборотов в минуту). Снимают с пластинки основную часть породы, доводят ее до толщины - 1,5-2,0 мм. Для дальнейшей шлифовки порошок М-150 смывается с диска и диск снова посыпается также смоченным порошком М-14, которым и обрабатывается пластинка до толщины 0,05-0,07 мм.

На этом обработка на шлифовальном станке заканчивается.

10. Дальше пластинка обрабатывается ручным способом. Для этого берется стеклянная доска, смачивается водой или глицерином и посыпается мелким порошком марок М-10 или М-7. Постепенным медленным движением вручную пластинку шлифуют на доске до возможно меньшей толщины, т.е. 0,02-0,03 мм. В процессе ручного шлифования готовность шлифа проверяется под поляризационным микроскопом, чаще всего по зернам кварца (кварцевые зерна толщиной 0,02 мм под микроскопом при скрещенных николях бледно-серого цвета). Если шлиф имеет большую толщину, то цвет кварца под микроскопом в скрещенных николях желтоватый или фиолетовый.

11. После достижения нужной толщины, шлиф тщательно промывается водой и покрывается покровным стеклом. Для этого шлиф слегка подогревается на спиртовке и поверхность его смазывается подогретым канадским или пихтовым бальзамом. Бальзам для наклейки образца на предметное стекло и покрытия покровным стеклом готовится следующим образом: истолченный бальзам заливают равным объемом ксилола и кипятят до получения в холодном состоянии консистенции густого меда. Бальзам для наклейки пластинки на предметное стекло готовится таким же способом, но до консистенции вара в холодном состоянии и наматывается на стеклянную палочку. При накладке покровного стекла нужно тщательно следить за тем, чтобы пространство между изготовленным шлифом и покровным стеклом было целиком заполнено бальзамом и в нем не оставалось пузырьков воздуха, мешающих просмотру шлифа. Закрытый покровным стеклом шлиф высушивается, зачищается скальпелем, промывается спиртом и документируется алмазным карандашом на конце предметного стекла. После этого шлиф считается готовым.
II.1.2. Подготовка образцов для изучения минералогического состава по фракциям

Для детального изучения минералогического состава глинистых пород они разделяются на фракции, каждая из которых анализируется отдельно. Для разделения на фракции берется навеска породы нарушенного сложения от 20 до 100 г. Величина навески связана с содержанием в породе глинистой фракции (чем порода богаче глинистой фракцией, тем меньше навеска образца).

Для определения минералогического состава глинистой фракции выделяется фракция мельче 0,005 мм, а в случае необходимости количественного определения минералогического состава песчаных и алевритовых зерен выделяются фракции 0,005-0,01; 0,01-0,05; 0,05-0,1 и крупнее 0,1 мм.

Фракции крупнее 0,1 мм выделяются ситовым способом.
II.2. Изучение минералогического состава

Общая оценка минералогического состава глинистых пород дается оптическим методом в прозрачных шлифах, оценка глинистой составляющей - рентгеноструктурным методом по фракции мельче 0,005 мм, а оценка алевритовой и песчаной составляющих - иммерсионным методом по соответствующим фракциям.
II.2.1. Оптический метод

Оптическим методом в прозрачных шлифах изучается качественный минералогический состав алевритовой и песчаной фракций. Состав неглинистых минералов определяется по оптическим свойствам и морфологии зерен минералов. Как показали многочисленные исследования глинистых пород, примерно 90-98 % неглинистых включений составляют кварц и полевые шпаты, остальное кальцит, слюды, карбонаты, глауконит, хлорит, пирит, окислы и гидроокислы железа, очень мало тяжелых минералов из групп пироксенов и амфиболов.

Методика определения оптических свойств алевритовых и песчаных включений неглинистых минералов изложена в работах Н. В. Логвиненко (1962) и В. Т. Фролова (1969). Ниже приводится таблица оптических свойств некоторых наиболее распространенных в глинистых породах неглинистых минералов (табл. 3).

После описания неглинистых включений в шлифах оптическим методом может быть получена общая характеристика основной глинистой массы. Однако судить о составе глинистых минералов по результатам оптического изучения можно только при мономинеральном составе глинистой фракции или преобладании в ней какого-то одного минерала.

При полиминеральном составе глинистой составляющей оптический метод может быть использован только для расчленения разреза на однородные слои. Однако, несмотря на малую эффективность метода при диагностике глинистых минералов, он весьма прост, полезен и незаменим для получения общего представления о породе.

Определение минералогического состава в шлифах основывается, главным образом, на оптических свойствах (показателях преломления и двупреломления) основной массы и на отдельных характерных особенностях сложения для каждого минерала. В табл. 4 приведены оптические свойства отдельных наиболее распространенных глинистых минералов*).

*) Детальные характеристики каждого из минералов можно найти в работах М. С. Швецова (1958), Р. Е. Грима (1959).

По результатам оптического изучения шлифов разреза пород, слагающих оползневые склоны, выделяются однородные по минералогическому составу слои и отдельные характерные для каждого слоя образцы для детальной характеристики минералогического состава глинистой фракции в агрегатах ориентированных частиц. Преимущество этого метода перед методом шлифов в том, что в основе его лежит способность глинистых частиц в процессе осаждения ориентироваться в силу своего чешуйчатого строения.

Для проведения анализа ориентированных агрегатов в посуду, в которой выпаривается выделенная методом отмучивания глинистая фракция, помещают 1-2 предметных стекла.

На эти стекла оседают тонким слоем глинистые частицы, образуя как бы монокристалл.

В иммерсионных жидкостях по нарезанным бритвой полоскам и нитям из ориентированного слоя глинистых частиц определяются показатели преломления и двупреломления. По табл. 4 оценивают преобладающие в глинистой фракции минералы. Полученные таким образом оптические показатели усреднены и могут несколько отличаться от показателей, полученных непосредственно для отдельных чистых глинистых минералов. Последнее связано с тем, что агрегаты, как правило, состоят из полиминеральных разностей. Кроме того, определение оптических показателей затрудняют такие примеси, как окислы железа и органические вещества, постоянно сопутствующие глинистым минералам. Количественно минералогической состав неглинистых минералов определяется в иммерсионных жидкостях для фракции 0,25-0,1; 0,1-0,05; 0,05-0,01 мм после разделения их по удельному весу на легкую и тяжелую. При изучении легкой фракции применяются иммерсионные жидкости с показателем преломления 1,540-1,542, а при изучении тяжелой фракции часто, кроме этой основной жидкости, приходится пользоваться жидкостью с показателем преломления 1,700.

Изучение образцов в иммерсионных жидкостях позволяет определить кроме количественного состава фракций форму отдельных зерен и характер их поверхности. Как правило, в жидкостях просматривается 500-700 зерен. Количественное содержание каждого минерала определяется по отношению числа зерен этого минерала к общему числу изученных зерен этой фракции.

Спасибо: 0 
ПрофильЦитата Ответить
администратор




Сообщение:994
Зарегистрирован:24.02.13
Репутация:0
ссылка на сообщение  Отправлено:01.03.14 20:48.Заголовок:II.2.2. Рентгеновски..


II.2.2. Рентгеновский метод

Рентгеновская дифракция является физическим методом исследования глинистых минералов и часто используется совместно с другими физическими методами, такими как электронная дифракция, электронная микроскопия, дифференциальный термический и петрографический методы и инфракрасная спектроскопия, для кристаллографического и фазового анализа.

В основе методов рентгеновской идентификации минералов лежит тот факт, что каждое кристаллическое вещество имеет характерную атомную структуру, обусловливающую появление определенной дифракционной картины. Сопоставляя дифракционную картину неизвестного минерала с дифракционной картиной эталона, можно определить этот минерал (Михеев, 1957).

Таблица 3

Дифракционный метод не требует разрушения вещества и большого количества материала. Его можно использовать для качественного и количественного анализа смесей глинистых минералов.

Глинистые минералы имеют свои особенности, отличающие их от других кристаллических веществ, исследуемых рентгеновскими методами. Их исследование осложнено наличием структурного подобия многих глинистых минералов, а также тем, что многие глинистые минералы обнаруживают отклонения от строгой трехмерной периодичности.

Дифракционная картина от глинистых минералов характеризуется многими перекрытиями линий в результате их низкой симметрии, малой интенсивностью линий, в частности, на больших углах, где их трудно отличить от фона. Линии на малых углах имеют большие d - расстояния. Характерными для глинистых минералов являются сильная преимущественная ориентация, уширение профилей линий вследствие малого размера кристаллитов, различный уровень фона по обе стороны линии, асимметрия линий за счет дефектов структуры и другие необычные особенности, которых нет в хорошо окристаллизованных веществах.

Для проведения рентгеновского анализа предназначены рентгеновские аппараты: УРС-55, УРС-70-К-1, УРС-60, УРС-50И, УРС-50ИМ, ДРОН-1 (три последних называются дифрактометрами). В первых трех аппаратах для регистрации рентгеновских дифракционных отражений используется рентгеновская камера с фотопленкой. В последние годы рентгеновский метод был значительно усовершенствован путем применения счетчиков (гейгеровского, пропорционального, сцинтилляционного), которые в значительной мере вытесняют фотографические методы. При анализе глинистой фракции фотографическим методом образцы готовят в виде цилиндрических столбиков диаметром 0,5-1 мм или плоских препаратов из ориентированных и неориентированных частиц. В дифрактометре используют плоские образцы. Ориентированные препараты можно приготовить различными способами: осаждением на стеклянную пластинку из суспензии, центрифугированием диспергированной глины, одноосным сжатием глинистой пасты между двумя пластинками под прессом и т.д. Стеклянные пластинки с ориентированным слоем глины устанавливаются непосредственно в дифрактометр, или ориентированный слой, отделенный в виде тонких полосок лезвием безопасной бритвы, помещается в рентгеновскую камору (Nagelschimdt, 1941).

Абсолютно произвольную ориентировку частиц в образце глины получить намного сложнее, чем достаточно хорошую ориентировку. Неориентированные образцы в форме столбика для рентгеновского метода приготавливаются следующим способом: сухой порошок насыпают в тонкостенные капилляры при легком постукивании для уплотнения порошка. Плоские неориентированные образцы для дифрактометра трудно приготовить. Существуют особые способы приготовления образца либо путем смешивания его с различными дезориентирующими веществами (Engelhardt, 1955; Дьяконов, 1963; Brindley, 1961), либо путем специального приготовления образца легким прессованием его в держателе (кювете) и выравниванием шероховатой поверхностью пластинки (Norrish, 1962).

В связи с тем, что некоторые глинистые минералы имеют одинаковые или близкие межплоскостные расстояния, для разделения их на дифрактограммах необходимо проводить предварительную обработку исследуемого образца (насыщение глицерином, прокаливание при t = 600°, обработка HCl).

После получения рентгенограммы производят расчет углов отражений θ, а затем по специальным таблицам (Гиллер, 1966) определяют межплоскостные расстояния d, необходимые для идентификации минералов.

Измерение расстояний между рефлексами на рентгенограмме производится с помощью компараторов или специальных линеек. Техника вычисления по рентгенограмме угла θ сравнительно проста, благодаря прямолинейной зависимости между θ и расстоянием между рефлексами ( - постоянная величина для камеры данного радиуса). При этом необходимо учитывать различные погрешности, связанные с техникой эксперимента (за счет ширины линии, поглощения образцом рентгеновских лучей, изменения размера пленки в результате обработки и т.д.).

При дифрактометрическом методе отсчет углов θ производится непосредственно, а оценка интенсивности отражений является количественной.

Для диагностики глинистых минералов с помощью рентгеновского анализа часто вполне достаточно сведений о базальных межплоскостных расстояниях.


Рис. 2. Дифрактограммы малоугловых областей мономинеральных образцов.

Условия съемки: CuKα, Ni - фильтр; 35 кв, 10 ма; щели, 1, 0,5; 0,25×8 мм; 100 имп/сек; 1 град/мин, Rc-IV; а) каолинит положений; б) палыгорскит черкасский; в) иллит; г) Na - аскангель; д) полиминеральный образец № 2681 г. Хоста (каолинит + гидрослюда + хлорит + кварц + кальцит + полевой шпат)

ПОДРОБНОСТИ ТУТ

Спасибо: 0 
ПрофильЦитата Ответить
Ответ:
1 2 3 4 5 6 7 8 9
видео с youtube.com картинка из интернета картинка с компьютера ссылка файл с компьютера русская клавиатура транслитератор  цитата  кавычки оффтопик свернутый текст

показывать это сообщение только модераторам
не делать ссылки активными
Имя, пароль:      зарегистрироваться    
Тему читают:
-участник сейчас на форуме
-участник вне форума
Все даты в формате GMT  3 час. Хитов сегодня: 1
Права: смайлыда,картинкида,шрифтынет,голосованиянет
аватарыда,автозамена ссылоквкл,премодерациявкл,правканет